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ABSTRACT

Striking a balance between exploring the spatio-temporal
correlation and controlling model complexity is vital for
video-based crowd counting methods. In this paper, we
propose a Recurrent Fine-Grained Self-Attention Network
(RFSNet) to achieve efficient and accurate counting in video
scenes via the self-attention mechanism and a recurrent fine-
tuning strategy. Specifically, we design a decoder which
consists of patch-wise spatial self-attention and temporal
self-attention. Compared with vanilla self-attention, it ef-
fectively leverages the dependencies in spatial and temporal
domain respectively, while significantly reducing computa-
tional complexity. Moreover, the RFSNet recurrently feeds
the features into the decoder to enhance the spatio-temporal
representations. This strategy not only simplifies the model
structure and reduces the number of parameters, but also im-
proves the quality of estimated density maps. Our RFSNet
achieves state-of-the-art performance on three video crowd
counting benchmarks, and outperforms other methods by
more than 20% on the challenging FDST dataset.

Index Terms— Crowd counting, temporal modeling,
density map regression, self-attention.

1. INTRODUCTION

Crowd counting plays an indispensable role in a lot of com-
puter vision applications, such as auto driving, video surveil-
lance, safety management. Aiming to estimate the accurate
number of targets in a single picture or video frames, re-
searchers focus on overcoming challenge issues like scale
variation, occlusion and extremely density in the images.
Compared with traditional regression-based or detection-
based methods, recent counting models based on convo-
lutional neural networks (CNNs) have achieved significant
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Fig. 1. The self-attention-based decoder is able to capture
long-range spatio-temporal dependencies of video frames.
And the proposed RFSNet performs a coarse-to-fine process
of density maps regression in a recurrent manner.
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performance improvement. These models introduce multi-
branch structure [|1H3]], dilated convolution [4-6]], perspective
estimation [7H9]], etc., to promote the spatial invariance.

Nevertheless, most existing methods only consider count-
ing on still images, which results in the neglect of rich tempo-
ral information when dealing with video sequences. There-
fore, follow-up researchers attempt to capture temporal-wise
correlation from long-term and short-term perspective. (1)
Long-term methods retain information for long periods of
time through global temporal modeling. FCN-rLSTM [[10]]
and ConvLSTM [11] introduce LSTM from sequence learn-
ing tasks to model the long-range temporal dependencies.
However, they are hard to train and lack of parallelism be-
cause of superabundant parameters and the inherent sequen-
tial nature of LSTM. Integrated with 3D convolutional layers
and channel-wise attention, E3D [[12]] and STDNet [13]] are
able to jointly encode global and local spatio-temporal fea-
tures. But deep 3D CNNs rely heavily on stacked modules,
leading to the rapid growth of the network depth and model
size. (2) Short-term methods pay attention to the consistency
and discrimination between adjacent frames, so as to impose
strong smoothness constraints. LSTN [14] use a locality-
constrained spatial transformer to estimate the density map
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Fig. 2. An overview of the proposed RFSNet. Video frames are fed into an encoder that comprises of the first ten convolutional
layers of VGG-16. The resulting features are then recurrently fed into a self-attention-based decoder (SA-Block) to extract

spatio-temporal information for K times.

of next frame with that of the current frame. EPF [15]] and
MOPN [16] introduce optical flow to exploit inter-frame
motion clues. Nonetheless, these methods also introduce ad-
ditional computational overhead for the estimation of flows
or spatial transformation mappings, which are lack of anno-
tations for validation and constraint in most cases.

Along with the success of self-attention [[17] in sequential
learning tasks, there are also some counting methods [[18}[19]]
that takes advantage of its ability in modeling long-distance
dependencies. However, global self-attention forms, like non-
local [20], roughly represent a mixture of spatial and temporal
contexts, leading to the heavy computational complexity and
ambiguity for video scene understanding. In addition, crowd
images are full of blocks with difference scales but similar
patterns, which bring a lot of local redundancy [21]]. This fur-
ther reduces the significance of non-local encoding of primi-
tive self-attention in the spatial domain.

To address these issues, we propose a novel Recurrent
Fine-Grained Self-Attention Network (RFSNet) for video
crowd counting. As shown in Figure |1} the main compo-
nent of RFSNet is a self-attention-based decoder, termed
SA-Block. It provides the ability to capture long-range
spatio-temporal information through self-attention mecha-
nisms specifically acting on spatial and temporal domain,
respectively. In order to further reduce the sensitivity of
the decoder to scale variations and improve the computa-
tional efficiency, we divide the image features into patches
and perform spatial self-attention on local regions. Besides,
to avoid network deepening and parameter growth, we re-
currently feed the output of the SA-Block into itself in a
parameter-sharing style [22]]. This strategy not only inherits
the convergence ability of traditional feed-forward sequen-
tial models, but also introduces the recurrent inductive bias
of RNNs. Without complicated network structures and ad-
ditional supervision, our model is able to predict accurate
density maps with few parameters.

Our main contributions can be summarized as follows: (1)
We propose a fine-grained self-attention mechanism to cap-

ture spatio-temporal dependencies with high efficiency and
low computational complexity. (2) We propose a novel Recur-
rent Fine-Grained Self-Attention Network (RFSNet) which
achieves fine-tuning of density maps through a recurrent strat-
egy. (3) On three challenging benchmarks, RFSNet demon-
strates its effectiveness and achieves new state-of-the-art.

2. METHODS

2.1. Self-Attention and Complexity Analysis

Vanilla Self-Attention. Self-attention, first proposed in [[17]],
calculates a weighted average of feature representations with
the weight proportional to a similarity score between repre-
sentations. Formally, an input sequence of n tokens of di-
mensions d, X € R"*? is projected using three matrices
W@ g RiIxda WK ¢ RIXdr gnd WV € R4¥v to extract
feature representations QQ, K and V. They are also referred
to as query, key and value respectively, with d, = dg. So,
self-attention is defined as

SA(X) = SA(Q, K, V) = softmax (QK"/\/dy) V, (1)
Q=XW9 K=XW¥< v=XW". 2

To improve the parallelism and learning ability, the
queries, keys and values are then projected to h different
representation subspaces, named multi-head self-attention,

MSA(X) = [heady, ..., head,|W©, 3)
head; = SA(QWS KWK VW), )

where projections are parameter matrices WZQ € Rxdq
WE € R4 WY € R™¥dv and W9 € Ridoxd,

Regional Spatial Booster. Global self-attention like non-
local [20], in which all spatial locations attend to each other,
is too expensive for most image scales due to the quadratic
computation cost. Following the intuitive form of local
self-attention developed in [23]], we design the spatial self-
attention based on image patches to improve model efficiency



while focus on the relevance of each location to its neighbor
pixels in the same region.

Given an input X g € RT*WxCh where H is the height,
W is the width, and Cj, is the number of input channels. We
divide X g into blocks of p x p and then reshape it to X'y €

R”Hxnwxﬁxcm’ where ngy = [%—‘ and ny = [%1 This
operation is denoted as ﬁs, ie. Xy = ﬁS(XS). So,
RSB(Xs) = Rs (MSA (Rs (Xs))), )

where RSB(+) represents the Regional Spatial Booster, and

s is the inverse transformation of R g. The dimension of
the features do not change before and after input.
Global Temporal Booster. Given X, € RT*XHxWxCin
where 7 is the length of image sequence, X/, € RIWXT>Cu
is derived from another reshape operation denoted as ﬁT, ie.
X = ﬁT(XT). So there is

GTB(Xr) = R (MSA (ﬁT (XT))) ; (6)

where GTB(-) represents the Global Temporal Booster, and

T 1is the inverse transformation of ﬁT.
Complexity Analysis. Let X € RTXHXWXC denotes
the feature sequences in video scenes. For vanilla self-
attention, the computational complexity is O ((THW)2C),
ie. O(THWC x THW). However, the computational
complexity is reduced to O (T(HW)?C + HWT?C), i.e.
O(THWC x (HW +T)) when we perform self-attention
in space domain and time domain separately. Further, after
applying RSB(-) and GTB(-) mentioned above, the com-
plexity is © (T x BW 5 (p x p)? x C + HWT2O), ie.

O (THWC x (p*+T)). Note that the patch size p is usu-
ally far less that H and W in experimental settings. So when
T >1, (p*+T) < (HW +T) < THW. Hence, our
method significantly reduces the computational complexity.

2.2. SA-Block
As shown in Figure 2] the SA-Block can be abstracted into
two stages: spatial modeling and temporal modeling.
Spatial Modeling. The first stage can be defined as
X = Xg + Transformg (RSB (X)) @)

=Xgs + WZReLU (LN (WgRSB(X5s))), (8)

where X5 € R¥*WXC represents the input spatial features,
RSB(+) denotes the Regional Spatial Booster, LN is the layer
normalization and ReLU denotes the rectified linear units.
Wi e RO < and W% e R%*C are the weights of the two
fully connected layers respectively, in which r is the reduc-
tion rate for nonlinear dimensionality reduction. The follow-
ing bottleneck Transformg(-) further learns representations of
spatial features and fastens the convergence.

Temporal Modeling. Similarly, the second stage is

X1 = Xr + Transformy (GTB (X)) 9)
= Xr + W3ReLU (LN (W}GTB(X7))), (10)

Table 1. Comparison of different methods on crowd datasets.

FDST UCSD Mall
Method
MAE] RMSE| MAE| RMSE| MAE| RMSE|

MCNN [1] 3.77 4.88 1.07 1.35 - -
ConvLSTM [11]  4.48 5.82 1.30 1.79 2.24 8.50
CSRNet [4] - - 1.16 1.47 1.70 2.03
LSTN [14] 3.35 445 1.07 1.39 2.00 2.50
EPF [15] 2.17 2.62 0.86 1.13 - -
PHNet [25] 1.65 2.16 0.82 1.05 - -
MOPN [16] 1.76 2.25 0.97 1.22 1.78 225
STDNet [13] - - 0.76 1.01 147 1.88

RFSNet (ours) 1.25 1.60 0.72 0.91 1.46 1.90

where X7 € RTXHXWXC denotes the input temporal fea-
tures, GTB(-) denotes the Global Temporal Booster, W1. €
RO*% and W2 € R%*C are the weights of the two fully
connected layers respectively.

2.3. Recurrent Fine-Grained Self-Attention Network
Following previous works [4}/13]|14], we choose the first ten
convolutional layers of VGG-16 [24] as the encoder because
of its strong transfer learning ability. Then, the decoder (SA-
Block) takes the features to extract high-level spatio-temporal
information while retaining the size of feature maps. Inspired
by [22], we recurrently feed the features into the same SA-
Block, instead of stacking several SA-Blocks to construct a
more bloated decoder, as shown in Figure E}

After cycles of K times, a regression head consisting of
three convolution layers performs feature dimension reduc-
tion and density maps generation. In the end, the estimated
density maps, after resampling to the same size as the in-
put, and the ground truth are fed into the loss function with
a gradient-descent-based optimizer to train the parameters.

2.4. Loss Function

Following previous works [1,/4,|11,|14]], we adopt the Eu-
clidean distance to measure the pixel-wise difference between
estimated density maps and their corresponding ground truth.
Thus, the regression loss is defined as

N
L(©) = % 3 |DET (1;0) — DOT(L) |
i=1

. an

where N is the size of training set and I; represents the ¢-th
input image. DFST (I;; ©) is the output of RFSNet with pa-
rameters ©, while DST(I;) is its corresponding ground truth.

3. EXPERIMENTS

3.1. Experimental Settings and Datasets

Implementation Details. We use the pre-trained weights of
the encoder to accelerate the training process instead of train-
ing from scratch. Adam [26] is utilized as the optimizer to
minimize £, while the learning rate is set to 1 x 10~* ini-
tially. We fix the number of recursion ' = 4 and the batch
size is always set to 1. We set the patch size p = 5, and the
time step 7' = 5. Additionally, random resized cropping and
horizontal flipping are used to perform data augmentation.
Datasets. We conduct exhaustive experiments on three video-
based crowd datasets. FDST [14] contains 15000 images
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Fig. 3. Qualitative analysis on consecutive frames of FDST
dataset. Each column represents the input image, ground
truth, and predicted density maps of the proposed RFSNet,
CSRNet [4]] and STDNet [13] respectively. Counting results
are marked in the lower right corner of each density map. Re-
gions with greatest differences are marked by red boxes.

taken from 13 different scenarios, 9000 of which for training
and the rest for test. UCSD [27] is composed of 10 video
clips with a total of 2,000 frames captured by a stationary
camera in a fixed scene. MALL [_28]] consists of 2,000 frames
captured in a shopping mall with one surveillance camera.
Evaluation Matrics. Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) are adopted as the evaluation
metrics, same as previous works [[1H6},/10H13]].

3.2. Experimental Results

Quantitative Results. The comparison of different models
on the three crowd counting datasets are shown in Table [T}
In terms of counting accuracy, the proposed RFSNet is su-
perior to all previous methods. Especially compared with
MOPH [16], our method has more than 20% improvement
in both MAE and MSE metrics on all three datasets.
Qualitative Analysis. In Figure [3} we provide a qualitative
comparison between RFSNet and other methods. It is evident
that our model has the ability to estimate an accurate density
map while precisely calculating the count. Especially for the
same regions between adjacent frames, the prediction results
of RFSNet are more stable and consistent. Compared with
others, RFSNet has more accurate estimation results for both
the overall count and the details of the density map.

3.3. Ablation Study

Effectiveness of SA-Block. As shown in Table 2] the SA-
Block without self-attention mechanism (Exp. II) has sig-
nificantly improved performance over the baseline (Exp. I)
on FDST dataset. The results are further improved when the
RSB and GTB are plugged in (Exp. IIL, IV and V).
Effectiveness of the recurrent strategy. As shown in Ta-
ble |3 when we sequentially stack the SA-Block (Exp. VI,
VII and VIII), the number of model parameters grows signif-
icantly. However, in the recurrent cases (Exp. IX, X and XI),

Table 2. Ablation study of components of the SA-Block.

Exp Setting Performance
SA-Block RSB GTB MAE| RMSE|
I 1.57 2.13
)i V4 1.42 1.86
111 Vv V4 1.39 1.85
v 4 4 1.35 1.83
v V4 Vv Vv 1.25 1.60

Table 3. Ablation study of SA-Block arrangement policies.

Exp Setting Performance
SA-Block K  #Params M) MAE| RMSE|

VI 2 9.879 1.34 1.83
VII  Sequential 4 11.459 1.31 1.75
VIII 6 13.039 1.36 1.77
X 2 9.089 1.29 1.70
X Recurrent 4 9.089 1.25 1.60
XI 6 9.089 1.30 1.65

Table 4. Comparison of efficiency of different methods.

#Params Training  Inference Acc.
Method M) speed speed (MAEJ)
(slepochl)  (fps?)

ConvLSTM [11] 40.610 530 13 1.30
STDNet [|13] 18.146 50 34 0.76
RFSNet + NL 8.694 438 4 1.21
RFSNet + SSA + GTB 9.089 115 17 0.87
RFSNet + RSB + GTB ~ 9.089 46 23 0.72

the change of K has no effect on the model size. It is obvious
that when K increases to a certain extent, the performance
of the model on FDST dataset does not increase proportion-
able, but the calculation efficiency is greatly reduced. As a
trade-off between accuracy and efficiency, K is set to 4.
Discussion of model size and efficiency. Owing to our re-
current strategy, the proposed RFSNet is lightweight in model
size. In Table [ we compare it with other video-based meth-
ods on UCSD dataset. The number of parameters of RFSNet
is 9.089 million only, saving nearly 50% compared to STD-
Net [[13]] and more than 75% compared to ConvLSTM [11]].
Compared to the global self-attention mechanisms acting di-
rectly on the spatio-temporal domain (NL) or the spatial do-
main (SSA), the combination of RSB and GTB achieves re-
markable leap of efficiency and accuracy.

4. CONCLUSION

In this paper, we proposed a novel Recurrent Fine-Grained
Self-Attention network (RFSNet) to solve the task of video-
based crowd counting. Through a decoder consisting of
patch-wise spatial self-attention and temporal self-attention,
as well as a recurrent strategy, RFSNet effectively leverages
the spatio-temporal correlation between video frames and
generates fine-tuned density maps. The experiments con-
ducted on three video counting datasets demonstrate that our
method achieves state-of-the-art performance and maintains
computational efficiency.
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