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ABSTRACT

Recently, query-based instance segmentation methods have
achieved comparable performance to previous state-of-the-art
methods. However, the query lacks the learning of the consis-
tency between classification and segmentation tasks, which
may lead to misalignment between classification score and
mask quality (i.e., mask IoU) and can not result in a reliable
ranking for predictions. In this work, we propose a novel in-
stance segmentation method, termed AlignMask, which ef-
fectively learns task-aligned mask queries for instance end-to-
end. Specifically, we propose Aligned Query Learning (AQL)
to learn task-aligned features for pixel embedding and trans-
former decoder, which helps segmentation quality estimation
of the mask query. We also use Aligned Label Assignment to
explicitly align the optimization goals for classification score
and mask quality of the query. Extensive experiments on MS-
COCO show that our proposed AlignMask achieves compet-
itive performance with state-of-the-art models.

Index Terms— Instance segmentation, Task-aligned
query, Transformer on set prediction, Label assignment

1. INTRODUCTION

Instance segmentation is one of the classic and challeng-
ing computer vision tasks. Classical instance segmentation
methods [1, 2, 3] follow the two-stage paradigm and gener-
ate masks from dense bounding boxes. Some recent works
[4, 5, 6] use dynamic kernels to generate a dynamic number
of masks. However, these methods need to remove duplicated
predictions through non-maximum suppression (NMS). Until
DETR [7] is proposed, which regards object detection as a
set prediction problem and uses one-to-one label assignment.
DETR uses learnable query embeddings to represent objects.
Such a design effectively eliminates hand-designed anchors
and NMS. Recent end-to-end instance segmentation methods
[8, 9, 10, 11] are typically based on set prediction.
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Fig. 1. Illustration of segmentation results (mask IoU
with Ground-truth and classification scores) predicted by
Mask2Former [8] (top row) and the proposed AlignMask
(bottom row). Ground-truth is indicated by red mask, predic-
tion is green mask, and there overlap is yellow mask. Classi-
fication scores predicted by AlignMask better reflect the seg-
mentation quality of mask.

Query-based instance segmentation methods typically
generate binary masks associated with global classification
score through query embedding and pixel embedding, such
as [8, 11, 12]. However, pixel embedding and transformer
decoder lack the learning of the consistency between the
classification and segmentation tasks, the instability of bipar-
tite matching[13] and strict division of positive and negative
samples may give query inconsistent optimization goals for
two tasks. As a result, the misalignment between classifica-
tion score and mask IoU is illustrated in Fig. 1. Due to the
unreliability of classification score, a mask with lower mask
IoU is vulnerable to be ranked with high priority if it has a
high classification score, and the final average precision is
consequently degraded.

To address this problem, we propose a novel query gener-
ating and learning approach to learn task-aligned mask query,
which generates additional query by ground-truth mask and
pixel embedding, and through transformer decoder to learn
corresponding ground-truth mask and mask quality estima-
tion. We use mask quality to guide the classification opti-
mization goals and adjust sample weights to explicitly align
the classification score and mask quality of the query.

The main contributions of this work can be summa-
rized as follows:



Fig. 2. The overview architecture of our proposed AlignMask effectively learn task-aligned mask queries.

• We propose a novel transformer-based framework
AlignMask, which effectively learn task-aligned mask
query for instance end-to-end.

• We propose Aligned Query Learning (AQL) to learn
task-aligned features for pixel embedding and trans-
former decoder and use task-aligned learning strategy
for set prediction label assignment.

• We conducted extensive experiments on MS COCO
[14], showing that our AlignMask achieves competi-
tive performance and validating the effectiveness of our
task-alignment approaches.

2. METHOD

2.1. Overview architecture

We integrate the Aligned Query Learning(AQL) into a uni-
fied framework based on Mask2Former [8], termed as Align-
Mask shown in Fig. 2. The framework consists of a back-
bone, a pixel decoder, and a transformer decoder. Same as
Mask2Former, AlignMask is compatible with most backbone
architecture, uses the more advanced multi-scale deformable
attention Transformer (MSDeformAttn) [15] as default pixel
decoder, and uses transformer decoder with masked attention.

AQL is the core of AlignMask, which helps the pixel em-
bedding and transformer decoder learn the consistency be-
tween classification and segmentation tasks, use Aligned La-
bel Assignment explicitly align the optimization goals of two
tasks for both aligned queries and object queries, and more
details of AQL will be given in the next subsection.

2.2. Aligned Query Learning

Aligned Query Generating. Specifically, for one instance i,
we generate the aligned query aqi by the pixel embeddings
PE and its ground-truth mask mi, which can be defined as:

PPEi = ϕ(PE)

Pmi = ϕ(mi) (1)
MPfi = PPEi ⊗ Pmi

aqi = MLP (LN(GAP (MPfi)))

Fig. 3. Illustration of the details of our proposed Aligned
Query Learning.

where PE ∈ RC×H
4 ×W

4 denotes the pixel embedding,
mi ∈ {0, 1}H×W denotes the binarized ground-truth mask,
ϕ(·) denotes randomly point sampling [17] from a uniform
distribution, PPEi ∈ RK×C and Pmi ∈ RK×1 ,MPfi ∈
RK×C denotes the point sampled feature of pixel embedding
masked by ground-truth mask, aqi ∈ RC denotes the initial
value of an aligned query, MLP is a Multi-Layer Perceptron
with 2 hidden layers, LN is Layer Normalization, GAP is
global average pooling, H,W are the height and width of the
image, K is the number of sampled point. We set K = 12544,
i.e., 112 × 112 points.

As Fig. 3 shown, for each image have M instances, we
generate T sampled point sets, and each point set generate
M aligned queries. Due to the randomly point sampling set,
aligned queries generated by same ground-truth mask in dif-
ferent groups are different. This enhances the robustness of
mask quality learning through diverse aligned queries. We
keep the first NAQ queries generated from all T ×M queries,
if the number of queries is small than NAQ, we pad zero vec-
tors. Here we set NAQ = 100.

Aligned queries are generated only during training. It
obtains predicted masks and mask quality through the same



Table 1. Comparison with state-of-the-art instance segmentation methods on COCO val2017. Backbones pre-trained on
ImageNet-22K are marked with †.

Method Backbone Query type Epochs AP AP50 AP75 APs APm APl GFLOPS Params

Mask R-CNN [1] R50 dense anchors 400 42.5 - - 23.8 45.0 60.0 358 46M
SOLOv2 [6] R50 dense anchors 36 37.5 58.2 40 15.8 41.4 56.6 - -
QueryInst [11] R50 300 queries 36 40.6 63 44 23.4 42.5 52.8 - -
Mask2Former [8] R50 100 queries 50 43.7 66.0 46.9 23.4 47.2 64.8 226 44M
AlignMask(ours) R50 100 queries 50 45.4(+1.7) 66.3 50.1(+3.2) 25.8 48.3 65.7 246 44M

Mask2Former [8] Swin-S 100 queries 50 46.3 69.3 50.2 25.3 50.3 68.4 313 69M
AlignMask(ours) Swin-S 100 queries 50 48.6(+2.3) 70.4 53.6(+3.4) 28.8 52.1 69.8 333 69M

QueryInst [11] Swin-L† 300 queries 50 48.9 74.0 53.9 30.8 52.6 68.3 - -
Swin-HTC++ [16] Swin-L† dense anchors 72 49.5 - - 31.0 52.4 67.2 1470 284M
Mask2Former [8] Swin-L† 200 queries 100 50.1 74.1 54.7 29.9 53.9 72.1 868 216M

Mask2Former [8] Swin-B† 100 queries 50 48.1 72.1 52.1 27.8 52.0 71.1 466 107M
AlignMask(ours) Swin-B† 100 queries 50 50.5(+2.4) 72.9 55.8(+3.7) 29.1 54.1 71.7 486 107M

transform decoder as object queries. The labels of aligned
queries are the GT masks that generate it and IoU between
predicted masks and GT masks.

Aligned Label Assignment. We further introduce a label
assign method for set predictions to explicitly align the clas-
sification score and mask quality of the query. We use mask
quality to guide the classification optimization goals for posi-
tive samples and adjust sample weights for negative samples.

For the positive samples selected by bipartite matching,
we follow recent one-stage methods [18, 19] to adopt quality
focal loss (QFL) that make IoU between predicted mask and
matched GT as the target of classification. According to the
evaluation metric of COCO, an IoU smaller than 0.5 is a suffi-
cient condition for a false prediction. We only reduce negative
sample weights for queries that IoU bigger than θ = 0.5. Here
IoU denotes the maximum IOU between predicted mask with
all GT mask. We set the negative sample weights wneg as a
monotonically decreasing function defined within the interval
[0.5, 1], which can be defined as:

wneg =

{
1, if IoU < 0.5,

−k × IoUγ + b, if IoU >= 0.5,
(2)

where γ = 2 and wneg passes through the points (0.5, 1) and
(1, 0), so the k and b is determined constant.

The final loss function of classification is as follows:

Lcls =

Npos∑
i=1

|ti − si|γ BCE(si, ti)

+

Nneg∑
j=1

wj
neg × sγjBCE(sj , 0)

(3)

where i denotes i-th query that matched in bipartite match-
ing, j denotes j-th query that not matched, t is the mask IoU
between predicted mask and matched GT, s is the classifica-
tion score, γ is a hyperparameter and we set γ = 2, BCE is
Binary Cross Entropy loss.

3. EXPERIMENTS

3.1. Datasets and evaluation metrics

Our experiments are performed on MS COCO 2017 dataset
[14]. Following the common practice, all models are trained
on the train2017 split and evaluated on the val2017 split. We
report the standard mean average precision (AP) result on the
COCO validation dataset under different IoU thresholds and
object scales.

3.2. Implementation details

We follow the basic settings of Mask2Former on the COCO
dataset, except for the form of classification loss. If not stated
otherwise, we use 4 V100 GPU to train our models for 50
epochs with a batch size of 16 and 8 V100 GPU for model
with Swin-Base backbone. For ablation studies, we train our
models for 12 epochs with ResNet-50 backbone. For Aligned
Query Learning(AQL), we set T = 5 and NAQ = 100.

3.3. Main results

Comparison with state-of-the-arts. We compare Align-
Mask with state-of-the-art models on the COCO dataset in
Table 1. AlignMask outperforms a strong Mask R-CNN
[1] baseline using large scale jittering (LSJ) augmentation
[20, 21] and longer training iterations. And AlignMask
achieve 45.4 AP with ResNet-50 backbone[22], outperform-
ing the state-of-the-art Mask2Former [8] 1.7AP. AlignMask
have more improvement with Swin-Transformer backbone,
2.3 AP and 2.4 AP for Swin-S and Swin-B backbone[16]
respectively. Due to the limitation of computing resources,
we do not conduct experiment for Swin-L backbone. Align-
Mask with Swin-B backbone outperforms the state-of-the-art
QueryInst [11], HTC++ [3], and Mask2Former with Swin-L
backbone. Note that for a fair comparison, we only consider
single-scale inference and models trained with only COCO
train2017 set data.



Table 2. Quantitative analysis of the effectiveness of Alignmask on task-alignment with a ResNet-50 backbone

Method AP top-2% (10000 predictions) top-10% (50000 predictions)
PCC Mean Score Mean IoU PCC Mean Score Mean IoU

Mask2Former [8] 43.7 0.221 0.974 0.848 0.609 0.830 0.480
AlignMask(ours) 45.4 0.291 0.786 0.865 0.610 0.470 0.511

Table 3. Ablation results for different shared parameters of
transformer decoder between aligned query and object query.

Shared Parameters

self-attention masked attention[8] AP AP50 AP75

No Aligned Query 39.7 58.7 43.3

40.6 59.7 44.5

✓ 40.8 60.2 44.7
✓ 40.8 60.1 44.6

✓ ✓ 41.4 61.0 45.2

Table 4. Ablation results for different number of Aligned
Query NAQ and point sampling times T of GT Mask in AQL.

No AQ NAQ = 50 NAQ = 100

No AQ 39.7 - -
T = 1 - 40.8 41.0
T = 5 - 41.4 41.4

3.4. Ablation studies and Analysis

Quantitative Analysis for Task-alignment. We quantita-
tively analyze the effect of the proposed methods on the align-
ment of two tasks. For Mask2Former [8] and our AlignMask,
we collect their top-2% confident predictions(10000 predic-
tions) and top-10% confident predictions(50000 predictions)
on COCO val2017. As shown in Table 2, we calculate their
average classification score and average IoU with ground-
truth mask. Alignmask has 0.865 and 0.511 average IoU re-
spectively, which is more than Mask2Former, and the average
classification score also closer to the average IoU. To further
verify the ability for task-alignment of our method, we calcu-
late the Pearson correlation coefficient on these predictions.
Alignmask has 0.291 PCC on top-2% confident predictions,
which is more than 0.221 of Mask2Former. This indicates
that Alignmask helps bridge the gap between classification
confidence and segmentation quality, especially for high con-
fidence predictions. It can also be qualitatively observed in
the Fig. 4, our Alignmask reduces predictions that have high
classification score but low Mask IoU.

Influence of Components in AQL. As Shown in Table 3,
if use different Parameter in both self-attention and masked
attention of transformer decoder, AQL still improves the per-
formance. This result shows that AQL can help the pixel em-

Fig. 4. Comparisons of Mask2Former and our proposed
AlignMask. (a) shows the relationship between classifica-
tion Score and MaskIoU of Mask2Former predictions, and
the mask score has less relationship with MaskIoU. (b) shows
the results of AlignMask;

bedding learn task-aligned feature. Shared same transformer
decoder for aligned query and object query is better than use
different Parameter for self-attention or masked attention, it
shows that AQL helps the transformer decoder learn the con-
sistency of two tasks.

Hyper-parameters in AQL. We explore the influence of
different Aligned Query number NAQ and point sampling
times T of GT Mask in Table 4,. The results show that AQL
significantly improve the performance with one point sample
time of GT Mask, it shows the effectiveness and robustness
of AQL. The performance improves and converges gradually
by increasing the number of point samples times and Aligned
Query number.

4. CONCLUSION

In this work, we illustrate the misalignment between classi-
fication and segmentation tasks in the existing query-based
set prediction instance segmentation methods, and propose
AlignMask to align the two tasks. In particular, we design
Aligned Query Learning(AQL) to learn segmentation quality
estimation of the mask query and use a task-aligned learn-
ing strategy for end-to-end set prediction methods, which give
the query a task-aligned optimization goal and helps the pixel
embedding and transformer decoder learn the consistency be-
tween the two tasks. With these improvements, AlignMask
achieved a 50.5 AP on MS-COCO with Swin-Base backbone,
surpassing the state-of-the-art instance segmentation methods
with same backbone by a large margin.
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