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Abstract

Recent advances in robust semi-supervised learning
(SSL) typically filter out-of-distribution (OOD) information
at the sample level. We argue that an overlooked problem of
robust SSL is its corrupted information on semantic level,
practically limiting the development of the field. In this pa-
per, we take an initial step to explore and propose a unified
framework termed OOD Semantic Pruning (OSP), which
aims at pruning OOD semantics out from in-distribution
(ID) features. Specifically, (i) we propose an aliasing OOD
matching module to pair each ID sample with an OOD sam-
ple with semantic overlap. (ii) We design a soft orthogonal-
ity regularization, which first transforms each ID feature by
suppressing its semantic component that is collinear with
paired OOD sample. It then forces the predictions before
and after soft orthogonality decomposition to be consistent.
Being practically simple, our method shows a strong per-
formance in OOD detection and ID classification on chal-
lenging benchmarks. In particular, OSP surpasses the pre-
vious state-of-the-art by 13.7% on accuracy for ID classifi-
cation and 5.9% on AUROC for OOD detection on TinyIm-
ageNet dataset. The source codes are publicly available at
https://github.com/rain305f/OSP.

1. Introduction
Deep neural networks have obtained impressive per-

formance on various tasks [32, 46, 48]. Their success is
partially dependent on a large amount of labeled train-
ing data, of which the acquisition is expensive and time-
consuming [21, 27, 42, 47]. A prevailing way to reduce the
dependency on human annotation is semi-supervised learn-
ing (SSL). It learns informative semantics using annotation-
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Figure 1. (a) Intuitive diagram of OOD Semantic Pruning (OSP),
that pruning OOD semantics out from ID features. (b) t-SNE vi-
sualization [54] from the baseline [25]. (c) t-SNE visualization
from our OSP model. The colorful dots donate ID features, while
the black dots mark OOD features. The dots with the same color
represent the features of the same class. Here, our OSP and the
baseline are trained on CIFAR100 with 100 labeled data per class
and 60% OOD in unlabeled data.

free and acquisition-easy unlabeled data to extend the la-
bel information from limited labeled data and has achieved
promising results in various tasks [40, 52, 53, 56].

Unfortunately, classical SSL relies on a basic assump-
tion that the labeled and unlabeled data are collected from
the same distribution, which is difficult to hold in real-world
applications. In most practical cases, unlabeled data usually
contains classes that are not seen in the labeled data. Exist-
ing works [12, 17, 22, 42] have shown that training the SSL
model with these OOD samples in unlabeled data leads to
a large degradation in performance. To solve this problem,
robust semi-supervised learning (Robust SSL) has been in-
vestigated to train a classification model that performs sta-
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bly when the unlabeled set is corrupted by OOD samples.
Typical methods focus on discarding OOD information at
the sample level, that is, detecting and filtering OOD sam-
ples to purify the unlabeled set [12, 17, 22, 60]. However,
these methods ignore the semantic-level pollution caused
by the classification-useless semantics from OOD samples,
which improperly disturbs the feature distribution learned
from ID samples, eventually resulting in weak ID and OOD
discrimination and low classification performance. We pro-
vide an example to explain such a problem in Fig. 1. As we
can see, due to the semantics of Orchid in OOD examples,
the model pays too much attention to the background and
misclassifies the Butterfly as Beetle.

In this paper, we propose Out-of-distributed Semantic
Pruning (OSP) method to solve the problem mentioned
above and achieve effective robust SSL.

Concretely, our OSP approach consists of two main
modules. We first develop an aliasing OOD matching mod-
ule to pair each ID sample with an OOD sample with which
it has feature aliasing. Secondly, we propose a soft orthogo-
nality regularization, which constrains the predictions of ID
samples to keep consistent before and after soft-orthogonal
decomposition according to their matching OOD samples.

We evaluate the effectiveness of our OSP in extensive
robust semi-supervised image recognition benchmarks in-
cluding MNIST [55], CIFAR10 [31], CIFAR100 [31] and
TinyImageNet [15]. We show that our OSP obtains signifi-
cant improvements compared to state-of-the-art alternatives
(e.g., 13.7% and 15.0% on TinyImagetNet with an OOD
ratio of 0.3 and 0.6 respectively). Besides, we also empiri-
cally demonstrate that OSP indeed increases the feature dis-
crimination between ID and OOD samples. To summarize,
the contributions of this work are as follows:

• To the best of our knowledge, we are the first to exploit
the OOD effects at the semantic level by regularization
ID features to be orthogonal to OOD features.

• We develop an aliasing OOD matching module that
adaptively pairs each ID sample with an OOD sample.
In addition, we propose a soft orthogonality regulariza-
tion to restrict ID and OOD features to be orthogonal.

• We conduct extensive experiments on four datasets,
i.e., MNIST, CIFAR10, CIFAR100, and TIN200, and
achieve new SOTA performance. Moreover, we ana-
lyze that the superiority of OSP lies in the enhanced
discrimination between ID and OOD features.

2. Related work
2.1. Semi-Supervised Learning

Semi-supervised learning aims to learn informative se-
mantics from unlabeled data to reduce the dependence on
human annotations. Recently, many efforts have been made

in SSL classification [2,4,5,8,10,11,14,20,26,28,38,45,50,
61]. Powerful methods based on entropy minimization en-
force their networks to make low-entropy predictions on un-
labeled data [3,29,34,35,37,44]. Another spectrum of pop-
ular approaches is consistency regularization, whose core
idea is to obtain consistent prediction under various pertur-
bations [33, 40, 52, 53, 56]. VAT [40] enforces prediction
invariance under adversarial noises on unlabeled images.
UDA [56] and FixMatch [52] employ weak and strong aug-
mentation to compute the consistency loss.

The effectiveness of these SSL methods relies on an as-
sumption that the labeled and unlabeled data are drawn from
the same distribution. However, in practice, such an as-
sumption is difficult to satisfy, resulting in severe perfor-
mance degeneration of close-set SSL [18, 42, 60]. Thus,
there is an urgent need to develop SSL algorithms that could
work robustly with an unlabeled dataset that contains OOD
samples.

2.2. Robust Semi-Supervised Learning

Robust SSL aims to train a classification model that per-
forms stably when the unlabeled set is corrupted by OOD
samples [1, 6, 19, 26, 49]. This paper considers a com-
mon case: unlabeled data contains classes not seen in the
labeled data [57]. Current typical approaches focus on
removing the effects of OOD information at the sample-
level [12, 17, 22, 60]. UASD [12] utilizes self-distillation
to detect OOD samples and filter them out later from un-
labeled data. MTC [57] proposes a multi-task curriculum
learning framework, which detects the OOD samples in un-
labeled data and simultaneously estimates the probability
of the sample belonging to OOD. DS3L [17] trains a soft
weighting function to assign small weights to OOD unla-
beled samples and large weights to ID unlabeled samples.
More recently, some works have proposed utilizing OOD
samples to improve the feature representation capacity of
their models [25, 39]. Simultaneously, they also inherited
the idea of previous work to filter out OOD samples in clas-
sification supervision. [39] extracts style features of ID
samples and transfers OOD samples to ID style. T2T [25]
employs an agent self-supervised task on both ID and OOD
samples to enhance representation learning. Different from
existing methods, we propose to prune the harmful OOD se-
mantics out from ID features by regularizing ID and OOD
features to be orthogonal, resulting in accurate ID classifi-
cation and OOD detection.

3. Method
3.1. Preliminaries

Give a small set of labeled data Dl = {(xl
i, y

l
i)}

Nl
i=1 and

a large set of unlabeled data Du = {(xu
i )}

Nu
i=1 (Nl ≪ Nu),

where xl
i, y

l
i and xu

i are the image and label of the i-th la-
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Figure 2. The overall architecture of our proposed OSP for robust semi-supervised classification. The core modules are aliasing OOD
matching (AOM) and soft orthogonality regularization (SOR). The training process of our OSP consists of two-stage. At the pre-training
stage, we pre-train the model with rotation prediction and K-ways predictor (Sec. 3.5). At the fine-tuning stage, we utilize the pre-trained
OOD detection module to detect OOD samples in unlabeled data and store them in a class-wise memory bank, named recyclable OOD
bank. To prune harmful OOD semantics out from ID features, the AOM selects an OOD sample with semantic overlap for each ID feature
and composes ID-OOD pairs. Then the SOR applies a Soft Orthogonal Transform on ID-OOD pairs and generates pruned ID features.
Finally, our proposed Orthogonality Regularization Loss constrains the predictions of ID features and corresponding pruned ID features to
be consistent. During inference, the encoder and classifier are applied to K-ways ID classification. The details are shown in Sec. 3.

beled data and the image of the i-th unlabeled data. The
label space of labeled data contains K labels, that is, yli ∈
Cl = {1, ...,K}. The difference from classic SSL is that
there exist OOD samples of unseen classes in the unlabeled
training set. Formally, Cl ⊂ Cu and COOD = Cu \Cl. Ro-
bust SSL aims to train a classification model that performs
stably when the unlabeled set is corrupted by OOD samples.

3.2. Overview

The architecture of our OSP is summarized in Fig. 2. The
previous state-of-the-art robust SSL method T2T [25] is se-
lected as our baseline. Following T2T, OSP has a shared
encoder G(·), a K-ways classifier F(·), a rotation predic-
tion head H(·) and an OOD detection module M(·). Dif-
ferent from T2T [25], we design two novel modules, named
aliasing OOD matching (AOM) and soft orthogonality reg-
ularization (SOR) respectively, to prune out-of-distributed
semantic and obtain a robust classifier simultaneously. The
AOM module and SOR module are elaborated in Sec. 3.3
and Sec. 3.4, respectively. Inheriting the training paradigm
of current robust SSL methods [22, 25, 57], our OSP con-
tains two training stages: the pre-training stage and fine-
tuning stage, where the detailed descriptions are as follows.

Pre-training stage. The purpose of this stage is to obtain
a pre-trained model that could detect OOD samples reason-
ably. Following T2T [25], we carry out a K-way classifica-
tion on Dl and a self-supervised task [41] [9] (i.e., rotation
recognition [16]) on Du to pre-train the encoder G(·), the
classifier F(·), and the rotation predictor H(·). Given a la-
beled input xl

i ∈ Dl and an unlabeled input xu
j ∈ Du, we

denote their representations as zli = G(xl
i) and zuj = G(xu

j ).

The training of model parameters is optimized by minimiz-
ing a supervised cross-entropy loss Lce and a rotation loss
Lrot. Details are described in Sec. 3.5.

Meanwhile, we pre-train the OOD detection module
M(·) on Dl to calculate OOD scores S(xu) for unlabeled
samples, which is used to distinguish ID samples and OOD
samples in unlabeled data. Formally, we define the classifier
as follows:

g(xu) =

{
ID, if S(xu) ≥ γ,

OOD, if S(xu) < γ,
(1)

where γ is calculated by the Ostu algorithm [43] in our ex-
periments [25]. Additionally, we enforce our model to pre-
dict consistent predictions before and after adding Gaussian
noises on feature maps G(·), which helps to obtain more
robust features.

Fine-tuning stage. The fine-tuning stage aims to refine
the pre-trained model to obtain an accurate and robust clas-
sifier, which is achieved by the proposed AOM and SOR.

As illustrated in Fig. 2, we first utilize the OOD detec-
tion module M(·) to periodically split unlabeled data into
subsets: ID unlabeled set and OOD unlabeled set, referring
to [25]. The ID unlabeled set is then used to learn seman-
tics from unlabeled data. Due to OOD samples having con-
flicting targets with the classification, the compared base-
line T2T [25] drops the OOD unlabeled set. In contrast,
we argue that the dropped set still contains useful informa-
tion, which needs to be pruned in optimization. To this end,
we propose the AOM and SOR to achieve such a purpose.
Specifically, the AOM pairs each ID sample with an OOD
sample with which it has feature aliasing. And then, the



SOR constrains the predictions of ID samples to keep con-
sistent before and after soft-orthogonal decomposition ac-
cording to their matching OOD samples.

3.3. Aliasing OOD Matching

In this section, we introduce our aliasing OOD matching
(AOM) Module and discuss how to select anchor ID sam-
ples and pair them with OOD samples with which they have
feature aliasing.

Anchor ID features. During training, we sample anchor
ID images (queries) for each target category that appears in
the current mini-batch. We denote the feature set of labeled
candidate anchor images for category c as Al

c, which con-
tains features of labeled images with high confidence. For-
mally,

Al
c = {zli|zli = G(xl

i), y
l
i = c, pli[c] > δ}, (2)

where yli, z
l
i and pli are the ground-truth label, feature repre-

sentation, and class probability for the labeled image xl
i, re-

spectively. Here, δ denotes the positive threshold and is set
to 0.8 following [25], and pli[c] is the predicted probability
of class c. For unlabeled data, counterpart Au

c is computed
as:

Au
c = {zui |zui = G(xu

i ), ŷ
u
i = c,maxc(p

u
i [c]) > δ}, (3)

where yui = argmaxc(p
u
i [c]) is the pseudo label of the im-

age xu
i . This Au

c is similar to Al
c, the only difference is that

it uses the pseudo-label for class determination. Based on
Al

c and Au
c , we obtain the set of all qualified ID anchors Ac:

Ac = Al
c ∪ Au

c . (4)

Recyclable OOD samples. We define a binary variable
ni(c) to identify whether an unlabeled image xu

i ∈ Du is
qualified to be a recyclable OOD sample of category c. For a
target category c, a qualified recyclable OOD sample should
highly probably belong to OOD samples and share class-
agnostic features with ID samples belonging to the category
c. Therefore, ni(c) is formalized as follows:

ni(c) = 1[ŷui = c] · 1[g(xu
i ) = OOD] · 1[pui [c] < γOOD],

(5)
where γood is a threshold set as 0.2, which prevents us from
selecting some ID samples that are wrongly classified as
OOD. Considering that each minibatch contains ID samples
and not necessarily OOD samples, we store the recyclable
OOD samples of each category in a category-wise first-in-
first-out memory queue B(·).

Aliasing OOD Matching. In training iterations, we first
collect the Ac of the current minibatch and then match each
ID feature in it with a random OOD feature in B(c) as ID-
OOD pairs {ti}:

ti = (zi; oi), zi ∈ Ac, oi ∈ B(c). (6)
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Figure 3. The pipeline of the soft orthogonal decomposition
(SOD). The input of SOD is ID-OOD pairs, and its output is
pruned ID features. Here, the function G1 calculates the cosine
of the angle between two vectors, while the function F(·) cal-
culates the l2-norm of a vector. First, we obtain the cosine of
the angle of f ID and fOOD, named as C1 by G1. Then we get
the l2-norm lID of anchor ID feature f ID by F(·). We normalize
anchor ID feature f ID and obtain fn. Then we get the projector
of f ID to fOOD, named as f proj. Finally, we get the pruned ID
featuref out = f ID + αf proj.

At the end of each iteration, we update each B(c) by de-
termining whether there are qualified OOD samples (i.e.,
ni(c) = 1) in this minibatch.

3.4. Soft Orthogonality Regularization

In this section, we introduce our proposed SOR in detail,
which includes two parts, as follows:

• We perform a soft orthogonal decomposition (SOD) on
ID-OOD pairs to generate pruned ID features.

• We design two losses Lu
odc and Ll

odc, which regular-
ize prediction invariance on original ID features and
pruned ID features generated by soft orthogonal de-
composition.

Proposition 1 Feature Orthogonal Decomposition (FOD).
Any vector V in the high-dimensional space can be trans-

formed into two mutually orthogonal vectors Va and Vb

along a certain basis vector U direction, formally:

V⃗ = V⃗a + V⃗b,

V⃗a = ε⃗ ∗ ||V⃗ ∗ sin < U⃗ , V⃗ > ||,

Vb = σ⃗ ∗ ||V⃗ ∗ cos < U⃗ , V⃗ > ||,

s.t. ε⃗ ⊥ U⃗ , σ⃗ ∥ U⃗ , ||ε⃗|| = ||σ⃗|| = 1,

(7)

where ϵ and σ both are unit vectors, and < ·, · > denotes the
angle between two vectors, ∗ denotes scalar multiplication
of vectors.

Soft Orthogonal Decomposition. As shown in Fig. 3,
given ID-OOD pairs ti = (zi, oi), SOD applies soft feature
orthogonal decomposition on each ID feature zci along with



its matching OOD feature oi. Then we obtain the pruned
ID feature zci,r, which has less similarity with paired OOD
features since the OOD semantic component is pruned out
of the original ID feature. According to proposition 1, the
process is formulated as follows:

z⃗i = z⃗i,a + z⃗i,b,

z⃗i,r = z⃗i − αz⃗i,b,

s.t. z⃗i,a ⊥ o⃗i, z⃗
c
i,b ∥ o⃗i,

(8)

where α (we set α = 0.8) is a hyperparameter to slow down
the drastic changes in the feature space caused by FOT,
which named soft orthogonal decomposition (SOD). With
the pruned ID feature z⃗i,r for the anchor ID image z⃗i, we
obtain its corresponding probability vector pi,r as follows:

pi,r = F(z⃗i,r). (9)

Orthogonality Regularization Loss. Moreover, we de-
sign orthogonality regularization loss Ll

odc and Lu
odc to en-

courage the predictions of our model to be consistent before
and after SOD as:

Ll
odc =

1∑K
c=0 |Al

c|

K∑
c=0

∑
zl
i∈Al

c

KL(pli, p
l
i,r)

− 1

|Al
c|

∑
zl
i∈Al

c

ln(pli,r[c]),

Lu
odc =

1

M

K∑
c=0

∑
zu
i ∈Au

c

KL(pui , p
u
i,r),

(10)

where Ll
odc and Lu

odc are orthogonality regularization losses
for labeled and unlabeled data, respectively. For unlabeled
data, the Lu

odc is formulated as the KL divergence between
pui and pui,r, while for labeled data, we additionally min-
imize the cross-entropy between pli,r and yli to utilize the
label information.

3.5. Total Loss

In this section, we describe the training processing and
loss functions in detail. As mention above, we use T2T [25]
as our plain baseline.

At pre-training stage, our OSP follows baseline, which
learns a K-ways predictor with labeled data and a rotation
recognizer [16] with all unlabeled data to enhance the rep-
resentation capacity. For the K-ways prediction branch, F
calculates a K-dimensional class probability vector pli =
F ◦ G(xl

i). During training, cross entropy is used to regu-
larize the class probability vectors of labeled images:

Lce = − 1

||Dl||
∑

(xl
i,y

l
i)∈Dl

log pli[y
l
i], (11)

For rotation recognition, we denote four counterparts im-
ages xu

j generated via rotating by (k−1)∗90◦ as xu
j,k, then

the rotation prediction head H(·) is responsible for predict-
ing xu

j with rotation label k with cross entropy loss,

Lrot = − 1

4 ∗ ||Du||
∑

(xu
i )∈Du

4∑
k=1

log qli,k[k], (12)

To sum up, the total loss of OSP at the pre-training stage is
described as follows:

Lpre = Lce + Lrot + Ll
ood, (13)

where Ll
ood is used to train the OOD detection module

M(·), referring to [25].
At the fine-tuning stage, we apply our proposed orthog-

onality regularization losses on the baseline, which aims to
prune OOD semantic from ID features. Referring to [25],
the fine-tuning loss of baseline is described as follows:

Lt2t = Lce + Lu︸ ︷︷ ︸
Classic SSL Loss

+ Ll
ood + Lu

ood︸ ︷︷ ︸
OOD Detection Loss

+Lrot. (14)

With our proposed orthogonality regularization losses Ll
odc

and Lu
odc, the total loss of OSP at the fine-tuning stage is

described as follows:

Lft = Lt2t + Ll
odc + Lu

odc︸ ︷︷ ︸
Our OSR Loss

(15)

where Ll
ood and Lu

ood are used to train the OOD detection
model D(·) [25].

4. Experiments
4.1. Experimental Setup

Datasets. Referring to SafeStudent [22], T2T [25] and
DS3L [17], we evaluate the effectiveness of our OSP on
four widely used datasets: MNIST [55], CIFAR10 [31], CI-
FAR100 [31] and TinyImageNet [15].
OOD setting. In this paper, we use inter-dataset and intra-
dataset OOD settings to verify the superiority of OSP.
Intra-dataset OOD Setting: Following [22] [25] [17], we
select some categories as ID categories and the rest as OOD
categories in MNIST [55], CIFAR10 [31], CIFAR100 [31]
and TinyImageNet (a subset of ImageNet [15]). During
training, we random sample labeled and unabeled images
for ID categories as ID samples and unlabeled images from
OOD categories as OOD samples. For MNIST and CI-
FAR10, we select first six classes as ID categories. For CI-
FAR100 and TinyImageNet, we select first 50 classes and
100 classes as ID catrgories, respectively. Moreover, we
use the mismatch ratio γ ∈ [0, 1] to adjust the ratio of OOD
samples in the unlabeled data, which modulates class dis-
tribution mismatch. For example, when the mismatch ratio
γ is 0.3, 30% unlabeled samples come from unseen classes.
The details are shown in Tab. 3. More details about datasets
and OOD settings refers to Appendix.
Inter-dataset OOD setting: Following [25], we random
sample ID samples from CIFAR-10 and use other dataset



Method MNIST CIFAR10 CIFAR100 TinyImagetNet
γ=0.3 γ=0.6 γ=0.3 γ=0.6 γ=0.3 γ=0.6 γ=0.3 γ=0.6

Supervised 93.2 93.2 76.3 76.3 58.6 58.6 36.5 36.5

Classic SSL Methods
UDA† [56] - - 90.7 88.3 67.1 64.5 - -

Pi-Model [50] 92.4 86.6 75.7 74.5 59.4 57.9 36.9 36.4
PL [34] 90.0 86.0 75.8 74.6 60.2 57.5 36.6 35.8

VAT [40] 94.5 90.4 76.9 75.0 61.8 59.6 36.7 36.3
Fixmatch [52] - - 81.5 80.9 65.9 65.2 - -

Robust SSL Methods
DS3L [17] 96.8 94.5 78.1 76.9 - - - -
UASD [12] 96.2 94.3 77.6 76.0 61.8 58.4 37.1 36.9

CL [7] 96.9 95.6 83.2 82.1 63.6 61.5 37.3 36.7
Safe-Students [22] 98.3 96.5 85.7 83.8 68.4 68.2 37.7 37.1

MTC [57] 93.7 88.5 85.5 81.7 63.1 61.1 37.0 36.6
T2T [25] 99.1 98.7 91.6 89.3 70.0 68.2 39.0 35.0

Ours 99.3(+0.2) 99.4(+0.7) 90.5(-1.1) 88.2(-1.1) 72.4(+2.4) 70.9(+2.7) 52.7(+13.7) 52.1(+15.0)

Table 1. Intra-dataset: ID categories classification accuracy (%) of different methods on the four datasets. In this paper, the bold numbers
denote the best results across all approaches. The (+number) denotes the absolute improvements.

Method TIN LSUN Gaussian Uniform
Nl=250 Nl=1000 Nl=250 Nl=1000 Nl=250 Nl=1000 Nl=250 Nl=1000

Classic SSL Methods
UDA [56] 88.8 91.8 88.5 91.1 88.9 89.2 88.7 89.7
MixM [4] 82.4 88.0 76.3 87.0 75.8 85.7 72.9 84.5

Robust SSL Methods
DS3L [17] - 70.1 - 69.7 - 62.9 - 62.9
UASD [12] 83.6 - - 80.9 - - - -
MTC [57] 86.4 89.9 86.7 90.2 87.3 89.8 85.6 89.9
OTCT [] - 91.1 - 91.3 - 92.3 - 91.8
T2T [25] 91.5 93.3 91.1 94.4 90.8 93.6 90.0 94.1

Ours 92.4(+0.9) 93.7(+0.5) 91.9(+0.8) 94.8(+0.4) 91.0(+0.2) 93.7(+0.1) 90.8(+0.8) 94.2(+0.1)

Table 2. Inter-dataset: ID categories classification accuracy (%) of different methods on CIFAR10 and other four datasets as OOD.

Dataset ID
classes

OOD
classes

labeled
samples Nl

OOD
samples

MNIST 6 4 6×10 30,000×γ
CIFAR10 6 4 6×400 20,000×γ

CIFAR100 50 50 50×100 20,000×γ
TinyImageNet 100 100 100×100 40,000×γ

Table 3. Intra-dataset OOD setting details.

to synthesize OOD samples. Specifically, 10,000 unlabeled
images are sampled from each of the TIN dataset, the Large-
scale Scene Understanding (LSUN) dataset, Guassian noise
dataset, and uniform noise dataset, forming into 4 inter-
dataset OOD setting.

Metrics. Following [17] [25] [22], we choose the mean
accuracy (Acc.) to evaluate the classification performance.
For OOD detection, we use the area under the receiver op-
erating characteristic (AUROC) as metrics [25].
Implementation Details. Existing methods including UDA
[56], FixMatch [52], VAT [40], PL [34], Pi-Model [50],
MTC [57], DS3L [17], UASD [12], CL [7], T2T [25] and
Safe-Student [22] are used for comparison. For our method,
SGD is used to optimize network weights. The learning rate
is initially set to 0.03 at the pre-training stage and 0.001
at the fine-tuning stage, which is adjusted via the cosine
decay strategy [52, 56]. The momentum is set to 0.9. In
each training batch, the batch size of labeled data and unla-
beled data are 64 and 320. And the pre-training stage costs
50,000 iterations, and the fine-tuning stage takes 200,000
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odc AOM TinyImageNet CIFAR100

#1 35.0 68.2
#2 " " 49.5 69.9
#3 " " 48.4 70.4
#4 " " 46.5 70.5
#5 " " " 52.1 69.1

Table 4. Abaltion results on CIFAR100 (γ = 0.6) and TinyIma-
geNet (γ = 0.6)

Method MNIST CIFAR10 CIFAR100 TinyImageNet

T2T [25] 92.6 67.4 64.8 40.5
OSP 99.8 88.3 71.8 54.4

Table 5. The OOD detection performance comparison accross dif-
ferent datasets ( AUROC(%)).

iterations. We set the size of recyclable OOD Bank B(·)
is 5000. For UDA [56] and FixMatch [52], models are
trained with 250,000 iterations for a fair comparison.For
far comparison, when training MTC [57] and T2T [25], we
follow their original settings in [57] and [25], respectively.
In MNIST, we adopt a simple two-layer CNN model as a
backbone network [22] [17], while in CIFAR10, CIFAR100
and TinyImageNet, we use the Wide-ResNet28-2 [58] as the
backbone model.

4.2. Main Results.

OOD proportion of datasets. Here, we report the pro-
portion of OOD samples in different datasets to help un-
derstand the performances of OSP. As Tab. 3 shows, hard
datasets like TinyImageNet contain more OOD classes and
samples, for which obtaining a clear ID/OOD discrimina-
tion is very hard. In other words, the ‘feature aliasing’ prob-
lem corrupts learning more heavily on hard datasets (e.g.,
TinyImageNet) than on easy ones (e.g., CIFAR10).

Performance on intra-dataset setting. As shown in
Tab. 1, our OSP achieves the best performance on MNIST,
CIFAR100, and TinyImageNet with various class mismatch
ratios γ. Prominently, on TinyImageNet, most existing
methods have low accuracy but our OSP improves the best
baseline by 13.7% and 15.0% when the class mismatch ra-
tio γ = 0.3 and 0.6, respectively. This is because our OSP
is designed to tackle the ”feature aliasing” problem, and
this problem matters heavily in hard datasets like TinyIm-
ageNet as mentioned above. While for easy datasets, our
OSP also obtains competitive performances to SOTA al-
ternatives. These comparisons highlight the superiority of
OSP in addressing the corruption from OOD data.

Performance on inter-dataset setting. As shown in
Tab. 2, OSP outperforms previous methods on CIFAR10
with various OOD datasets (e.g. TIN, LSUN, Gaussian, and
Uniform). This indicates the good versatility of OSP for dif-

ferent OOD sources, reflecting its potential in real complex
dataset settings.

Results on various class mismatch ratio. To verify
the robustness of our OSP to corruption of unlabeled data,
we illustrate the performance of our model under various
mismatch ratios in CIFAR100 with 100 labeled data per
class. The results are shown in Fig. 4(a). We see that our
OSP achieves SOTA in all settings. Moreover, most base-
lines display significant performance degradation as γ in-
creases, whereas OSP remains competitive. These observa-
tions clearly validate the superiority of OSP.

Results on different labeled data amount. Moreover,
we further verify the effectiveness of our OSP under dif-
ferent labeled data amounts. Here, we carry out all experi-
ments on CIFAR100 with γ = 0.6. As shown in Fig. 4(b),
our OSP obtains the best performances on all labeled data
amount settings, reflecting the broad applicability of our
approach. A notable point is that the advantages of pre-
vious robust SSL methods (e.g., T2T [25] and MTC [57])
gradually fade away with the increase in the amount of la-
beled data. While our OSP consistently outperforms exist-
ing methods largely, meaning that our method exploits the
semantics of labeled data more comprehensively by regu-
larizing the representation of ID and OOD features.

4.3. Ablation Studies

Effect of Soft Orthogonality Regularization. To verify
the effectiveness of our SOR, we compare four variants: (1)
#1: the baseline without our proposed AOM and SOR and
use Eq.14 as finetuning loss function. (2) #2: only applies
SOR on labeled ID anchor features Al

c. (3) #3: only ap-
plies SOR on unlabeled ID anchor features Au

c . (4) #5: our
OSP which applies SOR on all ID anchor features Au

c ∪Al
c.

As shown in Tab. 4, our SOR module outperforms baseline
obviously and our proposed regularization loss Al

c and Au
c

both contribute to performance improvements.
Effect of Aliasing OOD Matching. To quantify the im-

pact of AOM, we compare two variants: (1) #4: random
selects OOD features to pair ID features (2) #5: our OSP
which matches each ID sample with an OOD sample that
has a large semantic overlap with it, as described in Sec. 3.3.
From Tab. 4, the results indicate that our ID-OOD pairs pro-
cedure (AOM) is beneficial to pruning OOD semantic and
further improves performance.

Effect of soft weight α. The parameter α is a hyper-
parameters to adjust the drastic changes in the feature space
caused by the orthogonal operation (in Eq. 8). We conduct
ablation experiments on different soft weights α to explore
the effect of it on OSP. As shown in Fig. 5(a), small α
weakens the effect of our OSP, while large α leads to dra-
matic changes in feature space. Given our observation of
the trade-off, we adopt α = 0.8 in all our experiments.
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Figure 4. (a) Effect of the class mismatch ratio. (b) Effect of the labeled data amount. All these results are obtained on the CIFAR100
dataset with 100 labeled data per class.
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Figure 5. (a) The ablation study about soft weight α. (b) The class-inter variance between ID features. (c) The angle between ID and OOD
features. All these results are obtained on CIFAR100 with 100 labeled data per class and γ=0.6.

4.4. Further Analysis

OOD detection. In Tab. 5, we compare our method
against T2T [25] under combinations of ID and OOD
datasets, to validate the efficacy of our OSP in detecting
OOD images. The AUROC is used as the metric here. We
see that our OSP outperforms T2T [25] under all settings
with a large margin. reflecting the superority of OSP in
ID/OOD discrimination.

Analysis of the angle of ID and OOD features. As
shown in Fig. (b), we see the baseline T2T has an angle
around 50◦, the cosine similarity is 64% (i.e., cos(50◦)),
which means there is an amount of meaning aliasing be-
tween ID and OOD features. In contrast, the feature angles
after our OSP are around 80◦, which remarkably suppresses
their similarity to about only 17% (i.e., cos(80◦)). This in-
dicates that our model effectively prunes OOD semantics
out from ID features, enhancing the discrimination of ID
and OOD samples.

Analysis on the inter-class variance. As shown in
Fig. (c), our OSP obtains a significantly larger inter-class
variance than the baseline [25], reflecting OSP obtains inter-
class discrimination with higher generalizability [59]. An-
other interesting property is that OSP encourages the inter-
class variance to increase within training, whereas the base-

line [25] does not. This suggests that OSP progressively
acquires discriminative ID class semantics during training.

Visualization of class activation map. We use Grad-
CAM [51] to visualize the class activation map. As shown
in Fig. 6, we notice that the baseline (row2) is distracted
and even focuses on non-foreground object regions, thus
has wrong predictions. In contrast, OSP focuses on the ob-
ject regions more accurately and comprehensively (row4),
indicating the superiority of OSP in learning semantic
structure. This is because OSP encourages our model to
only reserve classification-related ID semantics by pruning
classification-useless OOD semantics, which is mostly acti-
vated in the background region (row3).

More results on real-world dataset. STL-10 [13] is
a dataset for real-world image recognition, while each class
has fewer labeled training examples (ID samples) and a very
large set of unlabeled OOD examples. The unlabeled OOD
samples comes from a similar but different distribution from
the labeled data. The primary challenge is to make use of
the unlabeled data to improve recognition for the ID sam-
ples. All the images are color images with 96×96 pixels
in size. Here, we resize the images as 32×32. We applied
our OSP on STL-10 with 20,000 OOD samples, 100 labeled
and 200 unlabeled ID samples per class. Our OPS improves
T2T [25] by 3.1% (Acc.78.0% v.s. 74.9%).
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Figure 6. Activation maps of baseline [25] and OSP using Grad-CAM [51]. The red (blue) color represents more (less) attention from the
model. Rows 1-4 represent input images, CAMs from baseline [25], paired OOD features in OSP, and CAMs from OSP, respectively.

5. limitation
During the training, our OSP pairs an OOD feature for

each anchor ID features and applies orthogonal transform
between them. Therefore, our method inevitably requires
more training time costs. Specifically, the time costs for
one iteration of OSP and T2T[24] are 540 ms and 333 ms,
respectively. The extra costs come from matching ID-OOD
pairs, SOT operator, and SOR loss calculation, which prac-
tically depends on the scale of the OOD memory bank and
batch size.

6. Conclusion
In this paper, we introduce a novel method named OSP

for robust semi-supervised learning [19, 60], which first ex-
ploits the value of OOD at the semantic level. Our OSP
mitigates the corruption from OOD samples by pruning
OOD semantics out from ID features at the semantics level.
Specifically, we propose an aliasing OOD matching mod-
ule to pair each ID sample with an OOD sample with which
it has semantic overlap. We then develop a soft orthog-
onality regularization to regularize the ID and OOD fea-
tures to be orthogonal. Extensive experiments on four com-
monly used benchmarks demonstrate the effectiveness of
our OSP in OOD detection and ID classification. Further,
we will extend our OSP to more challenging open-set sce-

narios [23, 24, 26, 30, 36].
Acknowledgements. This work was supported n
part by the National Key R&D Program of China
(2022ZD0118201) Natural Science Foundation of China
(Grant 61972217, 32071459, 62176249, 62006133,
62271465), and the Natural Science Foundation of
Guangdong Province in China (grant 2019B1515120049).

References
[1] Maximilian Augustin and Matthias Hein. Out-distribution

aware self-training in an open world setting. arXiv: Learn-
ing, 2020.

[2] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution alignment
and augmentation anchoring. arXiv: Learning, 2019.

[3] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution alignment
and augmentation anchoring. International Conference on
Learning Representations, 2019.

[4] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin Raffel. Mixmatch: A
holistic approach to semi-supervised learning. neural infor-
mation processing systems, 2019.

[5] Zhaowei Cai, Avinash Ravichandran, Paolo Favaro,
Manchen Wang, Davide Modolo, Rahul Bhotika, Zhuowen



Tu, and Stefano Soatto. Semi-supervised vision transformers
at scale. 2022.

[6] Kaidi Cao, Maria Brbic, and Jure Leskovec. Open-world
semi-supervised learning. Learning, 2021.

[7] Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente
Ordonez. Curriculum labeling: Revisiting pseudo-labeling
for semi-supervised learning. national conference on artifi-
cial intelligence, 2020.

[8] Dong-Dong Chen, Wei Wang, Wei Gao, and Zhi-Hua Zhou.
Tri-net for semi-supervised deep learning. international joint
conference on artificial intelligence, 2018.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey E. Hinton. A simple framework for contrastive learn-
ing of visual representations. international conference on
machine learning, 2020.

[10] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey E. Hinton. Big self-supervised mod-
els are strong semi-supervised learners. neural information
processing systems, 2020.

[11] Yanbei Chen, Massimiliano Mancini, Xiatian Zhu, and
Zeynep Akata. Semi-supervised and unsupervised deep vi-
sual learning: A survey. 2022.

[12] Yanbei Chen, Xiatian Zhu, Wei Li, and Shaogang Gong.
Semi-supervised learning under class distribution mismatch.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 3569–3576, 2020.

[13] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 215–223. JMLR
Workshop and Conference Proceedings, 2011.

[14] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay K.
Vasudevan, and Quoc V. Le. Autoaugment: Learning aug-
mentation strategies from data. computer vision and pattern
recognition, 2019.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. computer vision and pattern recognition, 2009.

[16] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. Learning, 2018.

[17] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li,
and Zhi-Hua Zhou. Safe deep semi-supervised learning for
unseen-class unlabeled data. In International Conference on
Machine Learning, pages 3897–3906. PMLR, 2020.

[18] Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. Robust deep semi-
supervised learning: A brief introduction. arXiv preprint
arXiv:2202.05975, 2022.

[19] Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. Robust deep semi-
supervised learning: A brief introduction. 2022.

[20] Zhongyi Han, Xian-Jin Gui, Chaoran Cui, and Yilong Yin.
Towards accurate and robust domain adaptation under noisy
environments. arXiv: Learning, 2020.

[21] Zhongyi Han, Benzheng Wei, Xiaoming Xi, Bo Chen, Yi-
long Yin, and Shuo Li. Unifying neural learning and sym-
bolic reasoning for spinal medical report generation. Medical
Image Analysis, 67:101872, 2021.

[22] Rundong He, Zhongyi Han, Xiankai Lu, and Yilong
Yin. Safe-student for safe deep semi-supervised learn-
ing with unseen-class unlabeled data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14585–14594, 2022.

[23] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. Learning, 2016.

[24] Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich.
Deep anomaly detection with outlier exposure. Learning,
2018.

[25] Junkai Huang, Chaowei Fang, Weikai Chen, Zhenhua Chai,
Xiaolin Wei, Pengxu Wei, Liang Lin, and Guanbin Li. Trash
to treasure: Harvesting ood data with cross-modal match-
ing for open-set semi-supervised learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 8310–8319, 2021.

[26] Zhuo Huang, Chao Xue, Bo Han, Jian Yang, and Chen Gong.
Universal semi-supervised learning. 2022.

[27] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej
Chum. Label propagation for deep semi-supervised learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5070–5079, 2019.

[28] Juho Kannala, Alex Lamb, Kenji Kawaguchi, Vikas Verma,
Yoshua Bengio, David Lopez-Paz, Vikas Verma, Kenji
Kawaguchi, Alex Lamb, Juho Kannala, Yoshua Bengio, and
David Lopez-Paz. Interpolation consistency training for
semi-supervised learning. arXiv: Machine Learning, 2019.

[29] Rihuan Ke, Angelica I. Aviles-Rivero, Saurabh Pandey,
Saikumar Reddy, and Carola-Bibiane Schönlieb. A three-
stage self-training framework for semi-supervised seman-
tic segmentation. IEEE Transactions on Image Processing,
31:1805–1815, 2022.

[30] Jaehyung Kim, Youngbum Hur, Sejun Park, Eunho Yang,
Sung Ju Hwang, and Jinwoo Shin. Distribution aligning re-
finery of pseudo-label for imbalanced semi-supervised learn-
ing. neural information processing systems, 2020.

[31] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017.

[33] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. Learning, 2016.

[34] Dong-Hyun Lee. Pseudo-label : The simple and efficient
semi-supervised learning method for deep neural networks.
2022.

[35] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
International Conference on Machine Learning workshops,
3(2):896, 2013.

[36] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A
simple unified framework for detecting out-of-distribution
samples and adversarial attacks. neural information process-
ing systems, 2018.

[37] Yu-Feng Li and De-Ming Liang. Safe semi-supervised learn-
ing: a brief introduction. Frontiers of Computer Science,
2019.



[38] Yu-Feng Li and Zhi-Hua Zhou. Towards making unlabeled
data never hurt. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2015.

[39] Huixiang Luo, Hao Cheng, Fanxu Meng, Yuting Gao, Ke
Li, Mengdan Zhang, and Xing Sun. An empirical study
and analysis on open-set semi-supervised learning. arXiv
preprint arXiv:2101.08237, 2021.

[40] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
transactions on Pattern Analysis and Machine Intelligence,
41(8):1979–1993, 2018.

[41] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. european
conference on computer vision, 2016.

[42] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus
Cubuk, and Ian Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. Advances in neural in-
formation processing systems, 31, 2018.

[43] Nobuyuki Otsu. A threshold selection method from gray
level histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 1979.

[44] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta
pseudo labels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 11557–
11568, 2021.

[45] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and
Alan L. Yuille. Deep co-training for semi-supervised image
recognition. european conference on computer vision, 2018.

[46] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. international
conference on machine learning, 2021.

[47] Zhongzheng Ren, Raymond A. Yeh, and Alexander G.
Schwing. Not all unlabeled data are equal: Learning to
weight data in semi-supervised learning. neural information
processing systems, 2020.

[48] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat,
and Mubarak Shah. In defense of pseudo-labeling: An
uncertainty-aware pseudo-label selection framework for
semi-supervised learning. arXiv preprint arXiv:2101.06329,
2021.

[49] Kuniaki Saito, Donghyun Kim, and Kate Saenko. Open-
match: Open-set consistency regularization for semi-
supervised learning with outliers. arXiv: Computer Vision
and Pattern Recognition, 2021.

[50] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and perturba-
tions for deep semi-supervised learning. neural information
processing systems, 2016.

[51] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. International Journal of Com-
puter Vision, 2016.

[52] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin,
Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. arXiv
preprint arXiv:2001.07685, 2020.

[53] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Learning, 2017.

[54] Laurens Van Der Maaten. Learning a parametric embedding
by preserving local structure. In Artificial intelligence and
statistics, pages 384–391. PMLR, 2009.

[55] Hayden Walles, Anthony Robins, Alistair Knott, Hayden
Walles, Anthony Robins, and Alistair Knott. the mnist hand-
written digit database. 2011.

[56] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,
and Quoc V Le. Unsupervised data augmentation for consis-
tency training. Advances in Neural Information Processing
Systems, 2019.

[57] Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Multi-
task curriculum framework for open-set semi-supervised
learning. In European Conference on Computer Vision,
pages 438–454. Springer, 2020.

[58] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. british machine vision conference, 2016.

[59] Shaofeng Zhang, Lyn Qiu, Feng Zhu, Junchi Yan, Hen-
grui Zhang, Rui Zhao, Hongyang Li, and Xiaokang Yang.
Align representations with base: A new approach to self-
supervised learning. 2022.

[60] Xujiang Zhao, Killamsetty Krishnateja, Rishabh Iyer, and
Feng Chen. Robust semi-supervised learning without of dis-
tribution data. arXiv preprint arXiv:2010.03658, 2020.

[61] Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen
Qian, Chang Xu, and Sensetime Research. Simmatch: Semi-
supervised learning with similarity matching. 2022.


	. Introduction
	. Related work
	. Semi-Supervised Learning
	. Robust Semi-Supervised Learning

	. Method
	. Preliminaries
	. Overview
	. Aliasing OOD Matching
	. Soft Orthogonality Regularization
	. Total Loss

	. Experiments
	. Experimental Setup
	. Main Results.
	. Ablation Studies
	. Further Analysis

	. limitation
	. Conclusion

